EUROGRAPHICS 2017/ A. Peytavie and C. Bosch

Short Paper

Discovering New Monte Carlo Noise Filters
with Genetic Programming

Peter Kdn , Maxim Davletaliyev and Hannes Kaufmann

Institute of Software Technology and Interactive Systems, Vienna University of Technology, Vienna, Austria

Abstract

This paper presents a novel method for the discovery of new analytical filters suitable for filtering of noise in Monte Carlo
rendering. Our method utilizes genetic programming to evolve the set of analytical filtering expressions with the goal to min-
imize image error in training scenes. We show that genetic programming is capable of learning new filtering expressions with
quality comparable to state of the art noise filters in Monte Carlo rendering. Additionally, the analytical nature of the resulting
expressions enables the run-times one order of magnitude faster than compared state of the art methods. Finally, we present a
new analytical filter discovered by our method which is suitable for filtering of Monte Carlo noise in diffuse scenes.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: 3D Graphics and Realism—Raytracing

1. Introduction

Photorealistic image synthesis has been one of the main challenges
in computer graphics research since its beginning. Monte Carlo ren-
dering seems to be the most suitable solution due to its physical
plausibility, impressive level of photorealism, and versatility for nu-
merous visual effects. The main drawback of Monte Carlo render-
ing is its high computational cost due to the vast amount of samples
required to compute the multidimensional light integral. Moreover,
Monte Carlo rendering utilizes stochastic sampling which leads to
high variance for low sample count. This high variance appears as
noise in the final image. Previous research demonstrated that mul-
tidimensional filtering is a viable solution for removing noise from
Monte Carlo rendering [SD11,RKZ12,KBS15,ZJL*15]. However,
most of these methods still require computational time in terms of
seconds, thus prohibiting real-time performance.

In order to address this problem, we suggest to search for ana-
lytical expressions for high-quality filtering which can be rapidly
executed on the GPU. Our search is based on evolutionary compu-
tation. We use genetic programming [Ko0z92] to optimize the set of
filtering expressions with the goal to minimize the image error with
respect to ground truth. Analytical expressions were also used in
early work on noise filtering of color images. However, noisy color
data from Monte Carlo rendering is insufficient to filter the noise
which was formed by stochastic sampling of the high-dimensional
integral. We overcome this problem, similarly to previous meth-
ods [SD11,KBS15,ZJL*15], by utilizing additional scene features
(e.g. world positions, normals, direct illumination, etc.). Moreover,
we also employ gradients and variances of features.

Our genetic programming framework identifies new filters in an
iterative optimization process. Firstly, the set of filtering expres-

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Ours

LBF

ED UL e
R YL

™]

0.756 0.762

RelMSE: 2.527 1.773
Time[s]: 0.468 0.487 3.334

Figure 1: Filtering results of noisy rendering with 4 samples per
pixel. The comparison shows the cross-bilateral filter (CB), our fil-
ter, learning-based filtering (LBF) [KBS15] and ground truth (GT).

sions (population) is initialized by known analytical filters. The fol-
lowing steps are then performed in each iteration: The relative mean
square error (ReIMSE) [RKZ11] is calculated for each expression
on the set of training scenes. The expressions are then altered by
two expansion operations: (1) Crossover, which generates a new
expression from two selected parents and (2) mutation, which ran-
domly perturbs individual expressions based on a specified gram-
mar (Figure 2). Input filters for these expansion operations are se-
lected from population by tournament selection (Section 4.4). This
process generates filters optimized for Monte Carlo noise filtering.
Numerous scenes are used in the training process to generate filters
applicable for general Monte Carlo rendering of arbitrary scene.

We demonstrate the applicability of genetic programming for
discovery of analytical filters by presenting a generated filtering
expression suitable for filtering of Monte Carlo noise in diffuse

P. Kdn, M. Davletaliyev & H. Kaufimann / Discovering New Monte Carlo Noise Filters with Genetic Programming

scenes. The presented filtering expression is evaluated in terms of
quality and speed, and compared to state of the art [KBS15]. Our
results show that the discovered expression can achieve compara-
ble quality to state of the art while running one order of magnitude
faster. Finally, due to the analytical nature of the presented filter, it
can be easily parallelized and implemented on the GPU. The main
contributions of this paper can be summarized as following:

e We present a novel method for discovery of new analytical
Monte Carlo noise filters.

e A new efficient analytical filter, resulting from our genetic pro-
gramming experiments, is demonstrated.

o We identify the set of most important scene features for Monte
Carlo noise filtering.

2. Related Work

Previous research demonstrated numerous methods for multidi-
mensional noise filtering in Monte Carlo rendering. A multidimen-
sional adaptive sampling and reconstruction method was proposed
by Hachisuka et al. [HIW*08]. This method leverages multiple di-
mensions of sampling space to distinguish between noise caused
by variance and discontinuities in geometry and textures. A disad-
vantage of this algorithm is its inefficiency with high dimension-
ality. Lehtinen et al. presented methods for reconstruction of spa-
tial [LALD12] and temporal [LAC*11] light field from which the
final image is reconstructed. Rousselle et al. proposed two algo-
rithms for adaptive sampling and reconstruction [RKZ11, RKZ12]
which increase the quality of predictive rendering.

The capabilities of a wavelet basis in adaptive multidimen-
sional Monte Carlo rendering were investigated by Overbeck et
al. [ODRO09]. Previous research also showed that local regres-
sion theory can be utilized for adaptive sampling and filtering
in Monte Carlo rendering [MCY 14, BRM*16] to correctly esti-
mate the importance of specific features for local filtering. Sen and
Darabi [SD11] proposed a method which uses statistical informa-
tion to recognize the noise caused by random parameters. This in-
formation can be then used in a cross-bilateral filter to preserve
important scene details. Additionally, a specific filter for motion
blur rendering was presented in [ETH*09]. Recently, Kalantari et
al. [KBS15] investigated the capabilities of neural networks for
Monte Carlo noise filtering. The authors trained a neural network to
derive filter parameters from scene features and adaptively filter the
image in high quality. In our evaluation, we compare our filtering
expression to their work.

An axis-aligned filtering algorithm for interactive physically-
based global illumination was proposed in [MWRDI13]. This
method focuses only on the diffuse indirect illumination. An adap-
tive real-time filtering algorithm was proposed by Gastal and
Oliveira [GO12]. The authors compute filter responses at the re-
duced set of sampling points and use them for interpolation. Re-
cently, a real-time filtering method for distributed effects was pre-
sented by Yan et al. [YMRD15]. The authors use four 1D filters
to approximate 4D sheared filter. The limitation of this method is
that it cannot filter the noise from multiple distributed effects si-
multaneously. A comprehensive overview of methods for adaptive
sampling and reconstruction in Monte Carlo rendering can be found
in [ZJL*15].

(expression) ::= (node)
(node) ::= {op) | (scalar)
(op) := (unaryOp) ({node))
| (binaryOp) ({node) , (node))
| (vectorOp) ({vector) , {vector))
(unaryOp) ::= — | sin | cos | tan | exp | asin | acos | atan | sqrt

| mitchell | sinc | epanechnikov | biweight | tricube

(binaryOp) ::= x| — | + | / | pow
(vectorOp) ::= dot | distance? | distancel | distanceMax
(vector) ::= worldPosition | normal | texture | secTexture

| depth | dirlllumination | wpGradient | nGradient
| tGradient| secT Gradient | dGradient | diGradient
(scalar) ::= {(variable) |{const)
(variable) ::= wpVariance | nVariance | texVariance
| secTexVariance| dVariance | diVariance
(const) :=0.1]0.2]0.3]0.3333|1.0[2.0|3.0|x

Figure 2: The grammar used for generation of new expressions.

Genetic programming [Koz92] is a class of adaptive stochastic
optimization algorithms involving search and optimization in the
space of possible programs or analytic expressions. Genetic pro-
gramming was previously used in computer graphics for generating
new BRDF expressions [BLPW14] or for optimizing ray-triangle
intersection calculation [KS06].

3. Analytical Filtering Expressions

General image-space filtering algorithms estimate the value of pixel
i as a weighted average of its neighborhood:

1
Yjen,w(i,J) M

&=

where ¢; is the filtered color value, c; is the noisy color input and
N; is the neighborhood centered on position i. w(i, j) is the weight
of contribution of pixel j to the estimate. The calculation of w(i, j)
is the crucial part of image filtering algorithms. Our method calcu-
lates this weight by analytical filtering expressions which are to be
optimized in our genetic programming search.

During optimization, each of these expressions is represented in
the form of an Abstract Syntax Tree (AST) which allows to perform
crossover, mutations, and execution of expressions. The mathemat-
ical operators of the expressions are represented as inner nodes of
the AST and the feature data and constants are leaf nodes. Then,
any equation can be represented as a tree in which the parameters
of a function are its child nodes. In order to generate only valid ex-
pressions which contain operators often used in filters, we designed
a specific grammar (Figure 2). Each expression in our search con-
forms to this grammar.

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

P. Kdn, M. Davletaliyev & H. Kaufimann / Discovering New Monte Carlo Noise Filters with Genetic Programming

4. Genetic Programming Search

Our genetic programming framework trains the set of new filter-
ing expressions in an iterative optimization process. Firstly, the set
of filtering expressions is initialized by the bilateral filter and its
random mutations (Section 4.2). Then, the filters are iteratively op-
timized with the goal to minimize the error of the filtered image.
Each iteration of our optimization consists of the following steps:
(1) Evaluation of the fitness function, (2) selection of filters which
will proceed to the next iteration, (3) generation of new expressions
by crossover, and (4) altering the expressions by mutations.

We employ an island model genetic algorithm which favors ex-
ploration of the space of possible filters over narrowly search-
ing within profitable regions. The island model genetic algorithm
subdivides the whole population of expressions to multiple sub-
populations (islands). All islands are evolving separately with rare
interactions between them. These interactions typically include mi-
gration of the best expressions amongst islands. As a migration
strategy, we use an approach similar to Brady et al. [BLPW14]
which migrates the best expression from each island to the next
island in each n-th iteration. We set n to 5 in our implementation.
‘We used four islands in our experiments each containing 100 filters.

4.1. Crossover

The crossover operation is used to generate new filters from two
randomly selected parents. A new filter is generated from two par-
ent expressions in three steps: For each parent expression a node
in its AST tree is randomly selected (a crossover point). Then, the
sub-trees below the selected crossover points are swapped between
parents. Finally, one of these new expressions is used as a result.

4.2. Mutations

In order to further explore the space of possible solutions, genetic
programming uses mutations to alter individual expressions. One
mutation is randomly selected and applied to a filtering expression.
We use the following mutations in our framework:

e replace - replaces random node from AST representation of an
expression by a compatible node from our grammar (Figure 2).
The child nodes of the replaced node stay untouched and become
the children of the new node.

e swap - randomly selects two compatible nodes within AST and
swaps their sub-trees. The swap mutation is performed only if
one node is not the sub-tree of the other one.

e insert - randomly selects one node from AST and substitutes it
with an expression from codebook. In this case, the whole sub-
tree below the selected node is substituted by a new expression.

e delete - randomly selects a node from AST and replaces it by a
constant node with value 1.

Codebook. Many efficient analytical noise filters were presented
in previous research. We can leverage these filters by enabling our
algorithm to insert them or their sub-parts into the optimized ex-
pressions. Therefore, the insert mutation utilizes a codebook of an-
alytical expressions to augment the filters during optimization. The
codebook in our method is formed by using the following analytical
filters and all of their mathematical sub-expressions: Mitchell, sinc,
Epanechnikov, biweight, tricube, Gaussian, and cross-bilateral.

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

4.3. Fitness Function

The fitness function is the most important part of our method which
learns new filtering expressions by minimizing this function. The
main goal of Monte Carlo noise filtering is to produce the filtered
image as close as possible to the ground truth solution (calculated
with high sampling rate without filtering). Therefore, our fitness
function measures the error between the image filtered by a specific
filtering expression and the ground truth. In our experiments we
used the relative mean square error (ReIMSE) [RKZ11] which is
commonly used in Monte Carlo rendering. ReIMSE is calculated
for each color of a pixel as (img — ref)?/(ref* +&) where img and
ref are filtered and ground truth values of the pixel and € = 0.01 is
used to prevent over-weighting of errors in dark regions. We used 6
training scenes in our experiments and the fitness function for each
expression was calculated as the sum of errors in all these scenes.

Training scenes. In order to learn general filtering expressions
independent of the specific scene, it is desirable to use many train-
ing scenes in the optimization process. We used six scenes in our
experiments. Three of these scenes were rendered by the pbrt ren-
derer and the other three by NVIDIA OptiX. For each scene we ren-
dered a noisy input image with 4 samples per pixel and the ground
truth image with high sampling rate. Additionally, we rendered the
following scene features with 4 samples per pixel: World position,
normal, diffuse texture, secondary diffuse texture (i.e. diffuse tex-
ture visible at glossy reflection), depth, direct illumination, gradi-
ents of all mentioned features, and variances of all features. This
data was then used in our genetic programming optimization as the
terms of input grammar during evaluation of filtering expressions
(Figure 2). Training scenes are shown in supplementary material.

4.4. Selection

A new generation of filters is formed in each iteration by repro-
ducing 10% of the previous expressions, creating 45% of expres-
sions by crossover and 45% of expressions by mutations of pre-
vious filters. In order to select the fittest individuals for repro-
duction, crossover, and mutation, we use the tournament selection
method [BLPW14]. In tournament selection, 8 individuals are ran-
domly selected from the set of expressions and the winner, the ex-
pression with the lowest fitness value, is used as a parent for the
generation of new expressions.

5. Results

We conducted several experiments with the presented genetic pro-
gramming framework. We used 200 iterations in each experiment
because after 200 iterations the decrease of ReIMSE was negligible.
The average duration of genetic programming optimization with 6
training scenes was 3 days on a computer with a 4GHz CPU and
NVIDIA GeForce GTX 980Ti GPU. We implemented the filtering
and calculation of ReIMSE on the GPU using CUDA.

We identified one high-quality filtering expression in the results
of our experiments. The resulting filter is shown in Equations 2
to 5. In order to validate the capability of this filter to effectively
reduce Monte Carlo noise, we compared it to the state of the art
learning-based filter (LBF) [KBS15] and to the cross-bilateral filter

P. Kdn, M. Davletaliyev & H. Kaufimann / Discovering New Monte Carlo Noise Filters with Genetic Programming

(CB) with constant feature weights in three testing scenes (Figure 1
and Figure 3). Evaluation with the third scene can be found in sup-
plementary files. The Monte Carlo noise filter, resulting from our
experiments, is defined by the following equations:

wp_ pwp
1" =17 Nimax

W(l7]) —e T 005 .pPowen)

. g) 2
sm(‘(\ |fiM ’)7/;‘]] | |2£)0~)

[lpi — pjller +2+¢€°

r = — v o7
power, e T P 3)
asin (biweight ———
2
i i di
biweight(||c,-—c_,-|\,,,,,x23'““c(w'd 5 HLz))
powery = e 4
Lt 11 tricube(|| 1 —]| 2) -mitchell (var"”)
powery = e W e Pl (%)

11" represents the world position feature at i-th pixel. var"? stands
for variance of this feature. sinc, tricube, biweight and mitchell
are filters from the codebook. ||f; — f;||r2 is Euclidean distance,
[|fi = fjllmax is Chebyshev distance and || f; — f;||r1 is Manhattan
distance between i-th and j-th feature values. The full list of terms
can be found in supplementary materials.

Ours

RelMSE: 0.087
Time[s]: 0.574 0.594

Figure 3: Comparison of our filter to cross-bilateral (CB) filter
and state of the art learning-based filter (LBF) [KBS15]. The noisy
input was rendered with 4 samples per pixel.

Our results show that the presented genetic programming frame-
work is capable of discovering new efficient Monte Carlo noise
filters (Figure 1 and Figure 3). In all test scenes our new generated
filter achieved higher quality in comparison to the cross-bilateral
filter with comparable speed. Additionally, the comparison shows
that the quality of our filter is similar to the high-quality LBF filter
[KBS15] while achieving the speed one order of magnitude faster.
In Figure 1, our filter has lower ReIMSE than LBF. However, the
LBF method achieves higher visual quality than our filter. This in-
consistency suggests that better metrics than ReIMSE can be used
in the future to measure visual quality. We measured filtering time
on a laptop with a 3.3 GHz CPU and GeForce GTX 880M GPU.

Finally, we analyzed data from 20 experiments and we identified
scene features the most frequently used by our algorithm for noise
reduction: Normal, direct illumination, texture, depth, gradient of
secondary texture, and world position (see supplementary files).

6. Conclusion

In this paper, we present a novel method for learning new Monte
Carlo noise filters. We employ genetic programming to effectively
explore the infinite multidimensional space of analytical filters with
the goal to minimize the filtering error. Our results demonstrate that
genetic programming is suitable tool for discovery of new efficient
filters. Moreover, the analytical nature of resulting filters enables
execution times one order of magnitude faster than compared state
of the art [KBS15]. Analytical filters have the additional advantage
of being human readable and easy to implement on the GPU.

References

[BLPW14] BRADY A., LAWRENCE J., PEERS P., WEIMER W.: gen-
BRDF: Discovering new analytic BRDFs with genetic programming.
ACM Trans. Graph. 33,4 (2014), 114:1-114:11. 2,3

[BRM*16] BITTERLI B., ROUSSELLE F., MOON B., IGLESIAS-
GUITIAN J. A., ADLER D., MITCHELL K., JAROSZ W., NOVAK J.:
Nonlinearly weighted first-order regression for denoising monte carlo
renderings. Computer Graphics Forum 35, 4 (June 2016). 2

[ETH*09] EGAN K., TSENG Y.-T., HOLZSCHUCH N., DURAND F.,
RAMAMOORTHI R.: Frequency analysis and sheared reconstruction for
rendering motion blur. ACM Trans. Graph. 28, 3 (2009), 1-13. 2

[GO12] GASTAL E. S. L., OLIVEIRA M. M.: Adaptive manifolds for
real-time high-dimensional filtering. ACM Trans. Graph. 31,4 (2012). 2

[HIW*08] HACHISUKA T., JAROSZ W., WEISTROFFER R. P., DALE
K., HUMPHREYS G., ZWICKER M., JENSEN H. W.: Multidimensional
adaptive sampling and reconstruction for ray tracing. ACM Transactions
on Graphics 27, 3 (aug 2008), 1-10. 2

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A machine learning
approach for filtering monte carlo noise. ACM TOG, 4 (2015). 1, 2,3, 4

[Koz92] KozA J. R.: Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Bradford, 1992. 1, 2

[KS06] KENSLER A., SHIRLEY P.: Optimizing ray-triangle intersection
via automated search. In IEEE Symposium on Interactive Ray Tracing
(2006), pp. 33-38. 2

[LAC*11] LEHTINEN J., AILA T., CHEN J., LAINE S., DURAND F.:
Temporal light field reconstruction for rendering distribution effects.
ACM Trans. Graph. 30,4 (2011), 55:1-55:12. 2

[LALDI12] LEHTINENJ., AILA T., LAINE S., DURAND F.: Reconstruct-
ing the indirect light field for global illumination. ACM TOG (2012). 2

[MCY14] MoOoON B., CARR N., YOON S.-E.: Adaptive rendering based
on weighted local regression. ACM Trans. Graph. 33,5 (2014). 2

[MWRDI13] MEHTA S. U., WANG B., RAMAMOORTHI R., DURAND
F.: Axis-aligned filtering for interactive physically-based diffuse indirect
lighting. ACM Trans. Graph. 32,4 (2013). 2

[ODR09] OVERBECK R. S., DONNER C., RAMAMOORTHI R.: Adap-
tive wavelet rendering. ACM Trans. Graph. 28, 5 (dec 2009). 2

[RKZ11] ROUSSELLE F., KNAUS C., ZWICKER M.: Adaptive sampling
and reconstruction using greedy error minimization. In SSIGGRAPH Asia
(New York, NY, USA, 2011), ACM, pp. 1-12. 1,2,3

[RKZ12] ROUSSELLE F., KNAUS C., ZWICKER M.: Adaptive rendering
with non-local means filtering. ACM Trans. Graph. 31,6 (2012). 1,2

[SD11] SEN P., DARABI S.: On filtering the noise from the random pa-
rameters in monte carlo rendering. ACM Trans. Graph. (2011). 1,2

[YMRDI15] YAN L.-Q., MEHTA S. U., RAMAMOORTHI R., DURAND
F.: Fast 4D sheared filtering for interactive rendering of distribution
effects. ACM Trans. Graph. 35, 1 (Dec. 2015), 7:1-7:13. 2

[ZJL*15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S. E.: Re-
cent advances in adaptive sampling and reconstruction for monte carlo
rendering. Computer Graphics Forum (2015). 1,2

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

